If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6p^2=10p-4
We move all terms to the left:
6p^2-(10p-4)=0
We get rid of parentheses
6p^2-10p+4=0
a = 6; b = -10; c = +4;
Δ = b2-4ac
Δ = -102-4·6·4
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2}{2*6}=\frac{8}{12} =2/3 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2}{2*6}=\frac{12}{12} =1 $
| (3b-45)/2=0 | | 4n^2-9n+1=-5 | | 4x^2+x-13=-10 | | 4x+4=2x36 | | 8n^2+8n-3=-5 | | 0.5(2x+4)=1/3(x-4 | | 8x+2500=64+50x | | 1.4x+8.6+0.7x=-0.05x | | -9v^2-2v-1=0 | | 8.3x+100=68.89+10x | | 0.5(2x+4)=1/3(x-4) | | 33-4x=17+12x | | -4(-5x+4)=-13 | | -4(-5x+4)=-1 | | 6(-2x-8)=3x | | 5x-6+4x=4x+6 | | 6-5(-7x+3)=-5 | | 4(3x+6)=15x+6 | | 35/42=x/6 | | 4(5x-4)-2x+2=3 | | 7x-17=4x1 | | (b+(3b-45)/2)+3b-45=400 | | 7x-17=4x=1 | | 400=(b+(3b-45)/2)+3b-45 | | 400=(b+(3b-45)/2)+3b-4 | | 7x-5-5=10x-x-15 | | 2x=x/2-15 | | 3x+7=5x+(-1) | | -40p-(-9)=40 | | 2(-7x-9)=-9x | | 2(-7x-9)=-9 | | -2(-4x+2)=-9x-6 |